INTEGRATIVE ONCOLOGY

SECOND EDITION

DONALD I. ABRAMS AND ANDREW T. WEIL

WEIL INTEGRATIVE MEDICINE LIBRARY

Cannabinoids and Cancer

DONALD I. ABRAMS AND MANUEL GUZMAN

Key Concepts

- Cannabis has been used in medicine for thousands of years prior to achieving its current status as an illicit substance
- Cannabinoids, the active components of *Cannabis sativa*, mimic the effects of the endogenous cannabinoids (the so-called endocannabinoids), activating specific cannabinoid receptors, particularly CB1 found predominantly in the central nervous system and CB2 found in cells involved with immune function.
- Delta-9-tetrahydrocannabinol, the main bioactive cannabinoid in the plant, has been available as a prescription medication approved for chemotherapy-induced nausea and vomiting and treatment of anorexia associated with the AIDS wasting syndrome.
- In addition to treatment of nausea and anorexia, cannabinoids may be of benefit in the treatment of cancer-related pain, possibly in a synergistic fashion with opioid analgesics.
- Cannabinoids have been shown to be of benefit in the treatment of HIV-related peripheral neuropathy suggesting that they may be worthy of study in patients with chemotherapy-related neuropathic symptoms.
- Cannabinoids have a favorable drug safety profile, medical use predominantly limited by their psychoactive effects and their limited bioavailability.
- There is no conclusive evidence that chronic cannabis use leads to the development of any malignancies; some preclinical studies actually suggest a protective effect.
- Cannabinoids inhibit tumor growth in laboratory animal models by modulation of key cellsignaling pathways, inducing direct growth arrest and tumor cell death, as well as by inhibiting tumor angiogenesis and metastasis.
- Cannabinoids appear to be selective antitumor compounds because they kill tumor cells without affecting their nontransformed counterparts
- More basic and clinical research is needed to ascertain not only the role of cannabinoids in palliative cancer care, but to delineate their role as potential anti-cancer agents with activity at a number of sites by way of multiple mechanisms of action.

Introduction

Although long-recognized for its medicinal values and widely used by millions throughout the world, cannabis receives little attention in the standard literature because of its status as a controlled substance and classification in the United States as a Schedule I agent with a high potential for abuse and no known medical use. Data on the potential effectiveness of medicinal cannabis is difficult to find due to the limited numbers of clinical trials that have been conducted to date. As a botanical, cannabis shares those difficulties encountered in the study of plants that are grown in many climates and environments from diverse genetic strains and harvested under variable conditions. However, the

potential benefits of medicinal cannabis have not been lost on a large number of people living with cancer, some of whom have been quite vocal in attributing their ability to complete their prescribed course of chemotherapy to the anti-emetic effects of inhaled cannabis. In the practice of integrative oncology, the provider is frequently faced with situations in which being able to recommend medicinal cannabis seems like the right thing to do (Adler & Colber, 2013; Bostwick, Reisfield, & Dupont, 2013). A growing body of preclinical evidence suggests that cannabis may not only be effective for symptom management, but may have a direct anti-tumor effect as well (Bowles, O'Bryant, Camidge, & Jimeno, 2012). This chapter will be devoted to a review of the role of cannabinoids in cancer.

Cannabis as Medicine: A Brief History

The use of cannabis as medicine dates back nearly 3000 years (Abel, 1980; Booth, 2003; Joy, Watson, & Benson, 1999; Mack, Joy, 2001; NCI PDQ CAM). Employed widely on the Indian subcontinent, cannabis was introduced into Western medicine in the 1840's by W. B. O'Shaughnessy, a surgeon who learned of its medicinal benefits first hand while working in the British East Indies Company. Promoted for reported analgesic, sedative, anti-inflammatory, antispasmodic and anticonvulsant properties, cannabis was said to be the treatment of choice for Queen Victoria's dysmennorhea. In the early 1900s, medicines that were indicated for each of cannabis's purported activities were introduced into the Western armamentarium making its use less widespread.

Physicians in the United States were the main opponents to the introduction of the Marihuana Tax Act by the Treasury Department in 1937. The legislation was masterminded by Harry Anslinger, director of the Federal Bureau of Narcotics from its inception in 1931 until 1962, who testified in Congress that "Marijuana is the most violence-causing drug in the history of mankind." The Act imposed a levy of one dollar an ounce for medicinal use and one hundred dollars an ounce for recreational use, which in 1937 dollars was a prohibitive cost. By using the Mexican name for the plant and associating it with nefarious South-of-the-Border activities, the proponents fooled many physicians. The Act was singly opposed by the American Medical Association who felt that objective evidence that cannabis was harmful was lacking and that its passage would impede further research into its medical utility. In 1942, cannabis was removed from the U.S. Pharmacopoeia.

Mayor Fiorello LaGuardia of New York commissioned an investigation into the reality of the potential risks and benefits of cannabis that reported in 1944 that the substance was not associated with any increased risk of criminal activity, addiction or insanity as had been claimed. The LaGuardia Commission Report, as well as subsequent similar investigations that have been commissioned nearly every decade since, went largely ignored.

In 1970 with the initiation of the Controlled Substances Act, marijuana was classified as a Schedule I dug. Where both Schedule I and Schedule II substances have a high potential for abuse, Schedule I drugs are distinguished by having no accepted medical use. Other Schedule I substances include heroin, LSD, mescaline, methylqualone and, most recently, gammahydroxybutyrate (GHB). In 1973, President Nixon's investigation into the risks and benefits of marijuana, the Shafer Commission, concluded that it was a safe substance with no addictive potential that had medicinal benefits. Despite the fact that it was deemed to have no medical use, marijuana was distributed to patients by the United States government on a case by case basis by way of a Compassionate Use Investigational New Drug (IND) program established in 1978.

In the late 1980s and early 1990s, many people living with human immunodeficiency virus-1 (HIV)

developed a wasting syndrome as a preterminal event (Chan, Naton, Saravolatz, Crane, & Osterberger, 1995). The wasting syndrome, characterized by anorexia, weight loss of greater than 10% body weight and frequently fever and diarrhea created hordes of cachectic individuals in search of any potential therapeutic intervention. Many turned to smoking cannabis (Abrams, 2000; Abrams, Child, Mitchell, 1995; Werner, 2011). Fearful that there might be a run on the Compassionate Use program, the Bush administration shut it down in 1992, the same year that dronabinol (delta-9-tetrahydrocannabinol [THC], Marinol®) was approved for treatment of anorexia associated with the AIDS wasting syndrome.

Delta-9-THC is one of the approximately 100 cannabinoids found in the cannabis plant and is felt to be the main psychoactive component. Overall, the plant contains about 400 compounds derived from its secondary metabolism, many of which may contribute to its medicinal effect. Synthetic delta-9-THC in sesame oil was first licensed and approved in 1986 for the treatment of chemotherapyassociated nausea and vomiting. Clinical trials done at the time determined that dronabinol was as effective, if not more so, than the available antiemetic agents (Sallen & Zinberg, 1975). The potent class of serotonin 5-HT₃ receptor antagonists which have subsequently revolutionized the ability to administer emetogenic chemotherapy had not yet come to market.

Dronabinol was investigated for its ability to stimulate weight gain in patients with the AIDS wasting syndrome in the late 1980's. Results from a number of trials suggested that although patients reported an improvement in appetite, no statistically significant weight gain was appreciated (Beal et al., 1995; Gorter, Seefried, & Volberding, 1992). In one trial evaluating megesterol acetate and dronabinol alone and together, the cannabinoid seemed to negate some of the weight increase seen in those only receiving the hormone (Timpone et al., 1997).

Cannabinoid Chemistry and Biologic Effects

Cannabinoids are a group of 21 carbon terpenophenolic compounds produced uniquely by *Cannabis sativa* and *Cannabis indica* species (Figure 8.1) (Adams & Martin, 1996; Grothenherman & Russo, 2002). With the discovery of endogenous cannabinoids and to distinguish them from pharmaceutical compounds, the plant compounds may also be referred to as phytocannabinoids. Although delta-9-THC is the primary active ingredient in cannabis, there are a number of non-THC cannabinoids and noncannabinoid compounds that also have biologic activity. Cannabidiol (CBD), cannabinol, cannabichromene, cannabigerol, tetrahydrocannabivirin and delta-8-THC are just some of the additional cannabinoids that have been identified. It is postulated that the secondary compounds may enhance the beneficial effects of delta-9-THC, for example by modulating the THC-induced anxiety, anticholinergic or immunosuppressive effects, and may reduce the unwanted effects of delta-9-THC, for example by attenuating seizures, psychoses or motor discoordination. In addition, cannabis associated terpenoids and flavonoids may increase cerebral blood flow, enhance cortical activity, kill respiratory pathogens and provide anti-inflammatory activity (Russo, 2011).

The neurobiology of the cannabinoids has only been identified within the past 25 years during which time an explosion of knowledge has occurred (Devane, Dysarc, Johnson, Melvin, & Howlett, 1988; Devane et al., 2002; Felder & Glass, 1998; Katona & Freund, 2012; Pertwee, 1997; Pertwee et al, 2010). In the mid-1980s, researchers developed a potent cannabinoid agonist to be used in research investigations. In 1986 it was discovered that cannabinoids inhibited the accumulation of cyclic adenosine monophosphate (cAMP), suggesting the presence of a receptor-mediated mechanism. By attaching a radiolabel to the synthetic cannabinoid, the first cannabinoid receptor,

CB1, was pharmacologically identified in the brain in 1988. The CB1 receptor is coupled to G_i proteins. Its engagement inhibits adenylyl cyclase and voltage-gated calcium channels, and stimulates rectifying potassium conductances and mitogen-activated protein kinase activity. By 1990, investigators had cloned the CB1 receptor, identified its DNA sequence and mapped its location in the brain, with the largest concentration being in the basal ganglia, cerebellum, hippocampus and cerebral cortex. Nowadays CB1 is known to be an ubiquitous protein that is present in basically all body tissues. In 1993 a second cannabinoid receptor, CB2, was identified outside the brain. Originally detected in macrophages and the marginal zone of the spleen, the highest concentration of CB2 receptors is located on the B lymphocytes and natural killer cells, suggesting a possible role in immunity.

The existence of cannabinoid receptors has subsequently been demonstrated in most animal species, all the way down to invertebrates. Are these receptors present in the body solely to complex with ingested phytocannabinoids? The answer came in 1992 with the identification of a brain constituent that binds to the cannabinoid receptor. Named anandamide from the Sanskrit word for bliss, the first endocannabinoid had been discovered. Subsequently 2- arachidonoylglycerol (2-AG) has also been confirmed as part of the body's endogenous cannabinoid system. These endocanabinoid function as neuromodulators. As the ligands for the 7-transmembrane domain cannabinoid receptors located in presynaptic nerve terminals, binding of the endocannabinoid leads to G-protein activation and the cascade of events transpires resulting in the opening of potassium channels which decreases cell firing and the closure of calcium channels which decreases neurotransmitter release (Figure 8.2).

FIGURE 8.1. Cannabinoids and their receptors.

Cannabinoids are a group of 21 carbon terpenophenolic compounds produced by *Cannabis* species. The phytocannabinoids complex with two receptors, CB1 and CB2, to produce their physiologic effects.

The functions of the endogenous cannabinoid system in the body are becoming more appreciated through advances in cannabinoid pharmacology (Miller & Devi, 2011; Pertwee, 2009). The identification of the cannabinoid receptors has led to a host of agonists and antagonists being synthesized. Utilizing these tools, investigators are discovering that the system is likely to be important in the modulation of pain and appetite, suckling in the newborn and the complexities of memory (Michael Pollen in *The Botany of Desire* gives a particularly entertaining description of the natural function of endocannabinoid system, a number of these cannabinoid receptor agonists and antagonists are being developed as potential pharmaceutical therapies. In the meantime, dronabinol, nabilone (Cesamet®, a synthetic cannabinoid) and cannabis are the currently available cannabinoid therapies in the United States. Levonantradol (Nantrodolum®) is a synthetic cannabinoid administered intramuscularly, not used as much clinically since the oral agents became available. Nabiximols (Sativex®), a whole plant extract delivered as an oro-mucosal spray with varying combinations of THC and cannabidiol, is available in Canada and some European countries and undergoing late phase testing in the US and other countries.

FIGURE 8.2. Signaling pathways coupled to the CB₁ cannabinoid receptor.

Cannabinoids exert their effects by binding to specific G_i protein-coupled receptors. The CB_1 cannabinoid receptor signals to a number of different cellular pathways. These include, for example, (i) inhibition of the adenylyl cyclase (AC)-cyclic AMP-protein kinase A

(PKA) pathway; (ii) modulation of ion conductances, by inhibition of voltage-sensitive Ca^{2+} channels (VSCC) and activation of G_i

protein-coupled inwardly rectifying K^+ channels (GIRK); and (iii) activation of mitogen-activated protein kinase (MAPK) cascades. Other less established cannabinoid receptor effectors and the crosstalk among the different pathways have been omitted for simplification.

Through the receptors described above, cannabis delivered by way of inhalation, orally or oromucosally can produce a host of biologic effects (Borgelt, Franson, Nussbaum, & Wang 2013). The 1999 Institute of Medicine report—*Marijuana and Medicine: Assessing the Science Base*—makes the following general conclusions about the biology of cannabis and cannabinoids (Joy et al., 1999)

- Cannabinoids likely have a natural role in pain modulation, control of movement, and memory.
- The natural role of cannabinoids in immune systems is likely multifaceted and remains unclear.
- The brain develops tolerance to cannabinoids.
- Animal research has demonstrated the potential for dependence, but this potential is observed under a narrower range of conditions than with benzodiazepines, opiates, cocaine, or nicotine.
- Withdrawal symptoms can be observed in animals but appear mild compared with those of withdrawal from opiates or benzodiazepines.

Pharmacology of Cannabis

When taken by mouth, there is a low (6–20%) and variable oral bioavailability (Adams & Martin, 1996; Agurell et al., 1986; Borgelt et al., 2013). Peak plasma concentrations occur after 1–6 hours and remain elevated with a terminal half-life of 20–30 hours. When consumed orally, delta-9-THC is initially metabolized in the liver to 11-OH-THC, also a potent psychoactive metabolite. On the other hand, when inhaled, the cannabinoids are rapidly absorbed into the bloodstream with a peak concentration in 2–10 minutes, which rapidly declines over the next 30 minutes. Thus, smoking achieves a higher peak concentration with a shorter duration of effect. Less of the psychoactive 11-OH-THC metabolite is formed. When nabiximols is taken oro-mucosally, no pharmacokinetic interactions seem to occur between its two major cannabinoid constituents, namely THC and CBD, and the pharmacokinetic properties of the THC present in nabiximols are similar to those of oral THC (Karschner, Darwin, Goodwin, Wright, & Huestis, 2011).

Cannabinoids can interact with the hepatic cytochrome P450 enzyme system (Watanabe, Matsunaga, Yamamoto, Funae, & Yoshimura, 1995 ; Yamamoto, Watanabi, Narimatsu, & Yoshimura, 1995). CBD, for example, can inactivate CYP 3A4. After repeated doses, some of the cannabinoids may induce P450 isoforms. The effects are predominantly related to the CYP₁A₂, CYP2C and CYP3A isoforms. The potential for a cannabinoid interaction with cytochrome P450 and, hence, possibly metabolism of chemotherapeutic agents has led to a small amount of data on the possibility of botanical:drug interactions. In one study, 24 cancer patients were treated with intravenous irinotecan (600 mg, n = 12) or docetaxel (180 mg, n = 12), followed 3 weeks later by the same drugs concomitant with medicinal cannabis taken as an herbal tea for 15 consecutive days, starting 12 days before the second treatment (Engels et al.,2007). The carefully conducted pharmacokinetic analyses showed that cannabis administration did not significantly influence exposure to and clearance of irinotecan or docetaxel.

Cannabinoids and Cancer Symptom Management

ANTIEMETIC EFFECT

The nausea and vomiting related to cancer chemotherapy continues to be a significant clinical problem even in light of the newer agents that have been added to our armamentarium since the 1970s and 1980s when clinical trials of cannabinoids were first conducted (Sutton & Daeninck, 2006) In those days, phenothiazines and metoclopropramide were the main antiemetic agents used. Dronabinol, synthetic THC, and nabilone, a synthetic analog of THC, were both tested as novel oral agents in a number of controlled clinical trials. Nabilone was approved in Canada in 1982, but only recently became available in the United States. Dronabinol was approved as an antiemetic to be used in cancer chemotherapy in the United States in 1986.

Numerous meta-analyses confirm the utility of these THC-related agents in the treatment of chemotherapy-induced nausea and vomiting. Tramer et al. (2001) conducted a systematic review of 30 randomized comparisons of cannabis with placebo or antiemetics from which dichotomous data on efficacy and harm were available. Oral nabilone, oral dronabinol, and intramuscular levonantradol were tested. No trials of smoked cannabis were included. There were 1,366 patients involved in the systematic review. Cannabinoids were found to be significantly more effective antiemetics than prochlorperazine, metoclopramide, chlorpromazine, thiethylperazine, haloperidol, domperidone, or alizapride. In this analysis, the number needed to treat (NNT) for complete control of nausea was 6; the NNT for complete control of vomiting was 8. Cannabinoids were not more effective in patients receiving very low or very high emetogenic chemotherapy. In crossover trials, patients preferred cannabinoids for future chemotherapy cycles. Tramer identified some "potentially beneficial side effects" that occurred more often with cannabinoids including the "high," sedation or drowsiness, and euphoria. Less desirable side effects that occurred more frequently with cannabinoids included dizziness, dysphoria or depression, hallucinations, paranoia, and hypotension.

A later analysis by Ben Amar reported that 15 controlled studies compared nabilone to placebo or available antiemetic drugs (Ben Amar, 2006). In 600 patients with a variety of malignant diagnoses, nabilone was found to be superior to prochlorperazine, domperidone and alizapride, with patients clearly favoring the nabilone for continuous use. Nabilone has also been shown to be moderately effective in managing the nausea and vomiting associated with radiation therapy and anesthesia after abdominal surgery (Robson, 2001; Tramer et al., 2001; Walsh, Nelson, & Mahmoud, 2003). In the same meta-analysis, Ben Amar reports that in 14 studies of dronabinol involving 681 patients, the cannabinoid antiemetic effect was equivalent or significantly greater than chlorpromazine and equivalent to metochlopramide, thiethylperazine and haloperidol. It is noted that the efficacy of the cannabinoids in these studies was sometimes outweighed by the adverse reactions and that none of the comparator antiemetics were of the serotonin receptor antagonist class that is the mainstay of treatment today.

A small pilot, randomized, double-blind, placebo-controlled phase II trial was conducted to investigate the whole-plant cannabis-based medicine, nabiximols, added to standard antiemetics in the treatment of chemotherapy-induced nausea and vomiting (Duran et al., 2010). Seven patients were randomized to receive the mixture of delta-9-THC and CBD and 9 added placebo to their standard of care antiemetic regimen. Of the nabiximols recipients, 5 of the 7 compared to 2 of the 9 on placebo experienced a complete response with a mean daily dose of 4.8 sprays in both groups without serious adverse effects. Further larger studies of the potential of nabiximols as an antiemetic are warranted.

There have been only three controlled trials evaluating the efficacy of smoked cannabis in chemotherapy-induced nausea and vomiting (Ben Amar, 2006). In two of the studies, the smoked

cannabis was only made available after patients failed dronabinol. The third trial was a randomized, double-blind, placebo-controlled, cross-over trial involving 20 adults where both smoked cannabis and oral THC were evaluated. One-quarter of the patients reported a positive antiemetic response to the cannabinoid therapies. On direct questioning of the participants, 35% preferred the oral dronabinol, 20% preferred the smoked marijuana and 45% did not express a preference. Four participants receiving dronabinol alone experienced distorted time perception or hallucinations, which were also reported by two with smoked marijuana and one with both substances. Both dronabinol and nabilone are FDA-approved for the treatment of nausea and vomiting associated with cancer chemotherapy in patients who have failed to respond adequately to conventional antiemetic therapy. Nabilone's extended duration of action allows for twice-a- day dosing of one or two milligrams commencing 1 to 3 hours prior to receiving chemotherapy. A dose of 1 or 2 milligrams the night before administration of chemotherapy might also be useful. It is recommended to commence dronabinol at an initial dose of 5 mg/m², also 1 to 3 hours prior to the administration of chemotherapy, then every 2 to 4 hours after chemotherapy, for a total of 4 to 6 doses/day. Should the 5 mg/m^2 dose prove to be ineffective, and in the absence of significant side effects, the dose may be escalated by 2.5 mg/m² increments to a maximum of 15 mg/m² per dose. Nabilone, with fewer metabolites and a lower dose range, may be associated with fewer side effects. The need to dose one to three hours prior to chemotherapy is one factor that drives patients to prefer inhaled cannabis where the delivery and effect peak within minutes. Patients also prefer the ability to more tightly titrate the dose of cannabinoids they receive when inhaling compared to oral ingestion.

The National Comprehensive Cancer Network antiemesis guidelines recommend cannabinoids among other therapies to consider as a breakthrough treatment for chemotherapy-induced nausea and vomiting (www.nccn.org).

APPETITE STIMULATION

Anorexia, early satiety, weight loss, and cachexia are some of the most daunting symptom management challenges faced by the practicing oncologist. There are very few tools in the tool-box for addressing these concerns. Patients are not only disturbed by the disfigurement associated with wasting, but also by their inability to engage in the social interaction associated with breaking bread and partaking of a meal. For many, the hormonal manipulation with megestrol acetate (synthetically derived progesterone) may be contraindicated or the side effects undesirable. Two small controlled trials demonstrated that oral THC stimulates appetite and may slow weight loss in patients with advanced malignancies (Ben Amar, 2006) In a larger randomized, double-blind, parallel group study of 469 adults with advanced cancer and weight loss, patients received either 2.5 mg of oral THC twice daily, 800 mg of oral megestrol daily, or both. In the megestrol monotherapy group, appetite increased in 75% and weight in 11% compared to 49% and 3%, respectively, in the oral THC group. These differences were statistically significant. The combined therapy did not confer additional benefits. A smaller randomized placebo-controlled trial of dronabinol in cancer patients demonstrated enhanced chemosensory perception in the treatment group (Brisbois et al., 2011). In the patients receiving cannabinoids, food was reported to taste better, appetite improved and the proportion of protein calories was increased compared to the placebo group.

Many animal studies have previously demonstrated that THC and other cannabinoids have a stimulatory effect on appetite and increase food intake. It is felt that the endogenous cannabinoid system may serve as a regulator of feeding behavior. For example, anandamide in mice leads to a

potent enhancement of appetite (Mechoulam, Berry, Avraham, DiMarzo, & Fride, 2006). It is felt that the CB1 receptors, present in the hypothalamus where food intake is controlled and in the mesolimbic reward system, may be involved in the motivational or reward aspects of eating. This led to the development of the pharmaceutical CB1 antagonist rimonabant (Acomplia ®), which was approved in Europe for the treatment of obesity on the basis of Phase III clinical trials where it was shown to induce a 4–5 kg mean weight loss with improved glycemic and lipid profiles (Christensen, Kristensen, Bartels, Bliddal, & Astrup, 2007). However, Acomplia® was never approved in the United States and was ultimately withdrawn from the European market because it was found to induce anxiety and depressive disorders that were deemed high risk, often leading to patient suicide.

Anecdotal as well as clinical trial evidence also supports the appetite- stimulating effect of inhaling cannabis. In classic trials conducted in the 1970s in healthy controls, it was found that, especially when smoked in a social/communal setting, cannabis inhalation led to an increase in caloric intake, predominantly in the form of between-meal snacks, mainly in the form of fatty and sweet foods. In cancer patients with anorexia as well as chemotherapy-induced nausea, it is worth noting that cannabis is the only antiemetic that also has orexigenic action. Although cannabis thus provides two potential benefits to the patient with cancer, the appetite-stimulation does not always reverse the cancer cachexia that is a function of energy wasting in addition to decreased food intake.

ANALGESIA

Our understanding of the possible mechanisms of cannabinoid-induced analgesia has been greatly increased through study of the cannabinoid receptors, endocannabinoids and synthetic agonists and antagonists. The CB1 receptor is found in the central nervous system as well as in peripheral nerve terminals. Elevated levels of the CB1 receptor—like opioid receptors—are found in areas of the brain that modulate nociceptive processing (Fine & Rosenfeld, 2013; Walker et al., 1999). In contrast, CB2 receptors are located in peripheral tissue and are present at very low expression levels in the CNS. Of the endogenous cannabinoids identified, anandamide has high affinity for CB1 receptor-selective antagonists (SR141716 for CB1 and CB2 receptors. With the development of receptor-selective antagonists (SR141716 for CB1 and SR144528 for CB2), additional information has been obtained regarding the roles of the receptors and endogenous cannabinoids in modulation of pain (Meng, Manning, Martin, & Fields, 1998; Walker, Huang, Strangman, Tsou, & Sanudo-Pena, 1999). Where the CB1 agonists exert analgesic activity in the CNS, both CB1 and CB2 agonists have peripheral analgesic actions (Calignano, LaRana, Giuffrida, & Piomelli. 1998; Fields & Meng, 1998).

Cannabinoids may also contribute to pain modulation through an anti-inflammatory mechanism—a CB2 effect with cannabinoids acting on mast cell receptors to attenuate the release of inflammatory agents such as histamine and serotonin and on keratinocytes to enhance the release of analgesic opioids (Facci & Meng, 1998; Ibrahim et al, 2005; Richardson, Kilo, & Hargreaves, 1998). Cannabinoids are effective in animal models of both acute and persistent pain. The central analgesic mechanism differs from the opioids in that it cannot be blocked by opioid antagonists. The potential for additive analgesic effects with opioids as well as the potential for cannabinoids to reduce nausea and increase appetite make a strong case for the evaluation of marijuana as adjunctive therapy for patients on morphine (Elikottil, Gupta, & Gupta, 2009).

Medical literature cites evidence of cannabinoids' ability to reduce naturally occurring pain, but few human studies have been performed. Early studies of cannabinoids on experimental pain in human volunteers produced inconsistent results. In some cases, the administration of cannabinoids failed to produce observable analgesic effects; in others, cannabinoids resulted in an increase of pain sensitivity (hyperalgesia). Institute of Medicine reviewers noted that these studies suffered from poor design and methodological problems and dubbed their findings inconclusive (Joy et al., 1999).

Encouraging clinical data on the effects of cannabinoids on chronic pain come from three studies of cancer pain. Cancer pain results from inflammation, mechanical invasion of bone or other painsensitive structure, or nerve injury. It is severe, persistent, and often resistant to treatment with opioids. Noyes and colleagues conducted two studies on the effects of oral THC on cancer pain. Both studies used standard single-dose analgesic study methodology and met the criteria for well-controlled clinical trials of analgesic efficacy.

The first experiment measured both pain intensity and pain relief in a double-blind, placebo controlled study of 10 subjects (Noyes, Brunk, Baram, & Canter, 1975). Observers compared the effects of placebo and 5, 10, 15, and 20 mg doses of delta-9-THC over a 6-hour period. Researchers reported that 15 and 20 mg doses produced significant analgesia, as well as anti-emesis and appetite stimulation. Authors cautioned that some subjects reported unwanted side effects such as sedation and depersonalization at the 20 mg dose level. In a follow-up single-dose study of 36 subjects, Noyes et al. reported that 10 mg of THC produced analgesic effects over a seven-hour observation period comparable to 60 mg of codeine, and that 20 mg of THC induced effects equivalent to 120 mg of codeine (Noyes, Brunk, Avery, & Canter, 1975). Authors noted that respondents found higher doses of THC to be more sedative than codeine. However, in a separate publication, Noyes et al reported that patients administered THC had improved mood, sense of well-being, and less anxiety (Noyes & Baram, 1974). A study by Staquet and colleagues on the effects of a THC nitrogen analogue on cancer pain yielded similar results (Staquet, Gantt, & Machin, 1978). Authors found the THC analogue equivalent to 50 mg of codeine and superior to both placebo and 50 mg of secobarbital in subjects with mild, moderate and severe pain.

A more recent study investigated the effects of whole-plant extract preparations in patients with intractable cancer pain (Johnson et al., 2010). One hundred seventy-seven patients experiencing inadequate analgesia despite chronic opioid use were randomized to receive the THC:CBD extract (N=60), the THC extract (N = 58) or placebo (N = 59) in a two-week, multicenter, double-blind trial. Pain relief was superior in the THC:CBD group with twice as many patients in the combination arm achieving a greater than 30% reduction in pain when compared to placebo. The THC alone group fared more or less the same as the placebo recipients. No change from baseline in median dose of opioids or need for breakthrough medications was seen.

NEUROPATHY

Cannabinoids have also been shown to be of potential benefit in an animal model of neuropathic pain (Herzberg, Eliav, Bennett, & Kopin, 1997). Neuropathic pain is a troubling symptom in cancer patients, especially those treated with platinum-based chemotherapy or taxanes. A painful sensory peripheral neuropathy is also commonly encountered in patients with HIV infection either as a consequence of HIV itself or antiretroviral drugs used in treatment of the infection. We completed a randomized, controlled trial of smoked cannabis compared to placebo in 50 subjects with HIV-related peripheral neuropathy (Abrams et al., 2007). Smoked cannabis reduced daily pain by 34% compared to 17% with placebo (p = 0.03). Greater than 30% reduction in pain was reported by 52% in the cannabis group and by 24% in the placebo group (p = 0.04). The first cannabis cigarette

reduced chronic pain by a median of 72% compared to 15% with placebo (p < 0.001). Cannabis also reduced experimentally induced hyperalgesia to both brush and von Frey hair stimuli ($p \le 0.05$) in a heat-capsaicin experimental pain model used to anchor the more subjective response of the chronic neuropathic pain. No serious adverse events were reported. The number needed to treat in this study was 3.6, which was virtually identical to the number needed to treat in other studies of inhaled cannabis in HIV and other neuropathic syndromes (Ellis et al., 2009, Wilsey et al., 2008; Wilsey et al., 2013).

Two recent placebo-controlled studies of cannabinioids for central neuropathic pain associated with multiple sclerosis produced results similar to the present study. In a crossover trial of synthetic delta-9-THC up to 10 mg/day, an NNT of 3.5 was reported (Svendsen, Jensen, & Back, 2004) A trial of the sublingual spray containing delta-9-THC alone or combined with CBD showed a 41% pain reduction with active drug compared to a 22% reduction with placebo (Rog, Nurmikko, Fride, & Young, 2005) In this study, the CBD alone preparation was ineffective in pain relief. Improvement in sleep quality was also reported with the sublingual spray. Nabiximols is currently approved in Canada for treatment of neuropathic pain related to multiple sclerosis as well as cancer-related pain. A small clinical trial has been conducted investigating nabiximols in 16 patients with chemotherapy-induced neuropathic pain with results suggesting that larger follow-on clinical trials in this patient population are warranted (Lynch, Cesar-Rittenberg, & Hohmann, 2014).

In an animal model of paclitaxel induced neuropathic pain, chronic administration of the nonpsychoactive cannabinoid CBD prevents the onset of chemotherapy induced neurotoxicity in mice (Ward, McAllister, Neelakantan, & Walker, 2014). The investigators suggest that adjunct treatment with CBD during taxane chemotherapy may be safe and effective in the prevention or attenuation of chemotherapy-induced neuropathic pain, although human studies are certainly required.

CANNABINOID:OPIOID INTERACTIONS

Synergism between opioids and cannabinoids has been postulated and subsequently demonstrated in a number of animal models (Cichewicz, 2004; Cichewicz, Martin, Smith, & Welch, 1999; Cichewicz & McCarthy, 2003; Manzanares et al., 1999; Smith, Cichewicz, Martin, & Welch, 1998). The antinociceptive effects of morphine are predominantly mediated by mu receptors but may be enhanced by delta-9-THC activation of kappa and delta opioid receptors (Manzanares et al., 1999). It has been further postulated that the cannabinoid:opioid interaction may occur at the level of their signal transduction mechanisms (Pugh, Smith, Dombrowski, & Welch, 1996; Welch & Stevens, 1992). Receptors for both classes of drugs are coupled to similar intracellular signaling mechanisms that lead to a decrease in cAMP production by way of G_i protein activation (Pugh, Welch, & Bass, 1994; Welch & Eads, 1999; Welch, Thomas, & Patrick, 1995). There has also been some evidence that cannabinoids might increase the synthesis or release of endogenous opioids, or both. With this background, we conducted a pharmacokinetic interaction study to investigate the effect of concomitant cannabis on disposition kinetics of opioid analgesics (Abrams, Couey, Shade, Kelly, & Benowitz, 2011). Ten patients with chronic pain on a stable dose of sustained-release morphine and 11 on sustained-release oxycodone had their opioid concentration over time curves evaluated before and after 4 days exposure to vaporized cannabis. No adverse side effects of combining cannabinoids and opioids were observed over the course of the in-patient evaluation. There were no significant alterations in the area under the curves for the opioids after the addition of vaporized cannabis. Although the study was not powered for pain as an endpoint, evidence of potential synergistic relief

of pain was appreciated. If cannabinoids and opioids are shown to be synergistic in a larger followon controlled clinical trial, it is possible that lower doses of opioids may be effective for longer periods of time with fewer side effects, clearly a benefit to the cancer patient with pain.

ANXIETY, DEPRESSION, AND SLEEP

In clinical trials of cannabis, euphoria is often scored as an adverse effect. Although not all patients experience mood elevation after exposure to cannabis, it is a frequent outcome. Much depends on the "set and setting" and the individual's prior experience with cannabis. Some people develop dysphoria with or without paranoia upon exposure to cannabis; for them cannabis or its constituents may not be clinically useful. Sleepiness is another common side effect that can easily be recast as improved sleep quality as has been reported in trials of nabiximols as well as inhaled cannabis (Russo, Guy, & Robson, 2007; Ware et al., 2010). For the cancer patient suffering from anorexia, nausea, pain, depression, anxiety, and insomnia, a single agent that can address all these symptoms would be a valuable addition to the armamentarium. Cannabis may be particularly useful in supportive- or palliative-care situations (Bar-Sela et al., 2013).

Safety and Side Effects

Cannabinoids have an extremely favorable drug safety profile (Adams & Martin, 1996; Grothenhermen & Russo, 2002; Guzman, 2003; Sutton & Daeninck, 2006). Unlike opioid receptors, cannabinoid receptors are not located in brainstem areas controlling respiration, so lethal overdoses due to respiratory suppression do not occur. The LD50 has been estimated to be 1,500 pounds smoked in 15 minutes as extrapolated from animal studies where the median lethal dose was estimated to be several grams per kilogram of body weight (Young, 1988)

The administration of cannabinoids to laboratory animals and humans does result in psychoactive effects. In humans, the central nervous system effects are both stimulating and depressing and are divided into four groups: affective (euphoria and easy laughter); sensory (temporal and spatial perception alterations and disorientation); somatic (drowsiness, dizziness and motor incoordination); and cognitive (confusion, memory lapses and difficulty concentrating).

As cannabinoid receptors are not just located in the central nervous system but are present in tissues throughout the body, additional side effects of note include tachycardia and hypotension, conjunctival injection, bronchodilation, muscle relaxation, and decreased gastrointestinal motility. Tolerance to the unwanted side effects of cannabis appears to develop rapidly in laboratory animals and humans. This is felt to occur due to a decrease in the number of total and functionally coupled cannabinoid receptors on the cell surface with a possible minor contribution from increased cannabinoid biotransformation and excretion with repeated exposure.

Although cannabinoids are considered by some to be addictive drugs, their addictive potential is considerably lower than other prescribed agents or substances of abuse. The brain develops tolerance to cannabinoids. Animal research demonstrates a potential for dependence, but this potential is observed under a narrower range of conditions than with benzodiazepines, opiates, cocaine, or nicotine. Withdrawal symptoms—irritability, insomnia with sleep EEG disturbance, restlessness, hot flashes, and rarely nausea and cramping—have been observed, but appear mild compared with the

withdrawal from opiates or benzodiazepines and usually dissipate after a few days. Unlike other commonly used drugs, cannabinoids are stored in adipose tissue and excreted at a low rate (half-life 1-3 days), so even abrupt cessation of THC intake is not associated with rapid declines in plasma concentration that would precipitate withdrawal symptoms or drug craving.

The 1999 Institute of Medicine report addressed the frequent concern that marijuana is a "gateway drug" leading to use of other subsequent more potent and addictive substances of abuse (Joy et al., 1999) The report recounts that marijuana is the most widely used illicit drug and, predictably, the first most people encounter. Not surprisingly, most users of other illicit drugs have used marijuana first. However, most drug users begin with alcohol and nicotine before marijuana; hence marijuana is not the most common and is rarely the first "gateway" drug. The report summarizes that there is no conclusive evidence that the drug effects of marijuana are causally linked to the subsequent abuse of other illicit drugs and cautions that data on drug use progression cannot be assumed to apply to the use of drugs for medical purposes, which is certainly pertinent to the discussion of cannabis in cancer patients.

Cannabis and Cancer Risk

A study conducted by the National Toxicology Program of the U.S. Department of Health and Human Services on mice and rats suggested that cannabinoids may have a protective effect against tumor development (U.S. Dept. of Health and Human Services, 1996). In this 2-year evaluation, rats and mice were given increasing doses of THC by gavage. A dose-related decrease in the incidence of both benign and malignant tumors was observed. Animals receiving THC dosing also survived longer than those receiving vehicle alone.

Mice and rats are not people, and gavage is not equivalent to smoking a combusted botanical product. Many would find the combustion and inhalation of a therapeutic agent to be an undesirable and perhaps counterintuitive way to deliver a drug. Most of the evidence available on the risk of cancer from marijuana smoking comes from epidemiologic studies, naturally, because prospective, randomized control trials are not possible. Over the years, reports of increased risks of lung cancer, oropharyngeal cancers, and prostate and cervical cancer have been most consistently reported. For each trial suggesting a possible increase in cancer incidence in chronic marijuana users, others have been published that appear to refute the association. A retrospective cohort study of 64,855 Kaiser Permanente health care members seen between 1979 and 1985 and followed through 1993 yielded an interesting finding (Sidney, Quesenberry, Friedman, & Tekewa, 1997). Men aged 15-49 were divided into four cohorts based on their use of tobacco and marijuana: never smoked either, smoked only cannabis, smoked only tobacco, smoked tobacco and cannabis. There were 5,600-8,200 men in each cell followed for an average of nearly nine years. In the men who never smoked, there were 2 cases of lung cancer diagnosed over the follow-up period. In the men who smoked tobacco, either alone or in addition to marijuana, the risk of lung cancer was increased 10-fold. In the over 50,000 person-years of follow-up of men who only smoked marijuana, there were no documented cases of lung cancer; less than in the never smokers!

A systematic review evaluating 19 studies that involved persons 18 years or older who smoked marijuana and examined premalignant or cancerous lung lesions concluded that observational studies failed to demonstrate significant associations between marijuana smoking and lung cancer after adjusting for tobacco use (Mehra, Moore, Crothers, Tetrault, & Fiellin, 2006). The authors site the selection bias, small sample size, limited generalizability and overall young participant age in stating

that because of the biological plausibility of an association of marijuana smoking and lung cancer, physicians should still caution patients regarding potential risks until further rigorous studies permit definitive conclusions.

A population-based case-control study of the association between marijuana use and the risk of lung and upper aerodigestive tract cancers was performed in Los Angeles (Hashibe et al., 2006). There were 1,112 incident cancer cases (611 lung, 303 oral, 108 esophagus, 100 pharynx, 90 larynx) matched to 1,040 cancer-free controls on age, gender, and neighborhood. A standardized questionnaire used during face-to-face interview collected information on marijuana use expressed in joint-years, where 1 joint-year is the equivalent of smoking one marijuana cigarette per day for one year. The interviews also requested information on the use of other drugs including hashish, tobacco (all forms) and alcohol, sociodemographic factors, diet, occupational history, environmental factors including exposure to smoke, medical history and family history of cancer. Data were presented as crude odds ratios and adjusted odds ratios using three models of covariate adjustment (with only Model 3 including tobacco use and pack/years). The results showed that although using marijuana for \geq 30 joint-years was positively associated in the crude analysis with each cancer except pharyngeal, no positive associations were found when adjusting for several confounders including cigarette smoking. In fact, in the Model 3 analysis for lung cancer, the cohort who reported > 0 to < 1 jointyears of marijuana use had a 37% reduction in the risk of developing lung cancer compared to those who never smoked marijuana. Although this was the only cohort in which the reduction in lung cancer risk reached statistical significance, in the model, all levels of marijuana use (including ≥ 60 jointyears) had adjusted odds ratios less than 1.0. The authors report adjusted ORs <1 for all cancers except oral cancer and found no consistent association of marijuana use with any malignant outcome. In what appears to be an overly aggressive attempt to delineate the possible limitations of their work that could have led to such a consistent yet startling result, the authors mention that "it is possible that marijuana use does not increase cancer risk ... Although the adjusted ORs < 1 may be chance findings, they were observed for all non-reference exposure categories with all outcomes except oral cancer. Although purely speculative, it is possible that such inverse associations may reflect a protective effect of marijuana."

Postulating that chronic use of cannabis impacts negatively on endocrine and reproductive systems, three recent investigations suggest an association between cannabis and testicular tumors (Daling et al., 2009; Lacson et al., 2012; Trabert, Sigurdson, Sweeney, Strom, & McGlynn, 2011). The three population-based case control studies report an association between marijuana use and elevated risk of especially nonseminomatous germ cell tumors. Although lacking good dose information and adequate sample sizes, the trends warrant further follow-up. Of note, a comprehensive review from Health Canada concluded that although concerns exist, the epidemiologic evidence of a link between use of cannabis and cancer remains inconclusive (Health Canada, 2010).

Cannabinoids as Anticancer Agents

There has been an increasing body of evidence over the past decade that cannabinoids may have a role in cancer therapy (Caffarel, Andradas, Perez-Gomez, Guzman, & Sanchez, 2012; Guindon & Hohmann, 2011; Guzman, 2003; McAllister et al., 2011; Pisanti, Picardi, D'Alessandro, Laezza, & Bifulco, 2013; Velasco, Sanchez, & Guzman, 2012). Evidence from cell culture systems as well as animal models have suggested that THC and other cannabinoids may inhibit the growth of some tumors by the modulation of signaling pathways that lead to growth arrest and cell death as well as by

inhibition of angiogenesis and metastasis. The antiproliferative effects were originally reported in 1975 by Munson and colleagues, who demonstrated that delta-9-THC, delta-8-THC and cannabinol inhibited Lewis lung adenocarcinoma cell growth in vitro as well as in mice. Curiously, there was no real follow-up of these findings for 20 years, when the line of investigation was picked up by scientists in Spain and Italy; those countries have remained at the forefront of this emerging field (Bifulco & DiMarzo, 2002; Bifulco, Laezza, Pisanti, & Gazzero, 2006; Caffarel et al., 2012; Guzman, 2003; Massi, Solinas, Cinquina, & Parolaro, 2012; Pisanti et al., 2013; Velasco et al., 2012). Since the late 1990s, several plant-derived (THC and CBD), synthetic (WIN-55,212-2 and HU-210), and endogenous cannabinoids (anandamide and 2-arachidonoylglycerol) have been shown to exert antiproliferative effects of a wide variety of tumor cells in culture systems. In addition to the original lung adenocarcinoma study, other tumor cells that have been shown to be sensitive to cannabinoidinduced growth inhibition include glioma, thyroid epithelioma, leukemia/lymphoma, neuroblastoma and skin, uterus, breast, gastric, colorectal, pancreatic, and prostate carcinomas (Blazquez et al., 2004; De Petrocellis et al., 1998; Ligresti et al., 2006; Llanos et al., 2003; McAllister et al., 2005; McKallip et al., 2002; Patsos, Hicks, Greenhough, Williams, & Parolaro, 2005; Sanchez et al., 2001; Sarfaraz, Afaq, Adhami, & Mukhtar, 2005; Vaccani, Massi, Colombo, Rubino, & Parolaro, 2005; Velasco, Galve-Roperh, Sanchez, Blazquez, & Guzman, 2004). Perhaps even more compelling, cannabinoid administration to nude mice slows the growth of various tumor xenografts or genetically initiated tumors including lung, breast, colorectal, and skin carcinomas, thyroid epitheliomas, melanomas, pancreatic carcinomas, lymphomas, and gliomas. The requirement of CB1 and/or CB2 receptors for the antitumor effect has been shown by various biochemical and pharmacological approaches already mentioned, and the cumulative effects of cannabinoid receptor signaling in the control of cell fate are expected to have important implications in the potential of cannabinoids for regulating tumor cell growth.

Cannabinoids may exert their antitumor effects by a number of different mechanisms including direct induction of transformed cell death (Figure 8.3), direct inhibition of transformed-cell growth, and inhibition of tumor angiogenesis and metastasis (Blazquez et al., 2003; Vaccani et al., 2005). A desirable property of antitumor compounds is their preferential targeting of malignant cells. Cannabinoids appear to kill tumor cells but do not affect their nontransformed counterparts and may even protect them from cell death. This is best exemplified by glial cells. Cannabinoids have been shown to induce apoptosis of glioma cells in culture and induce regression of glioma cells in mice and rats. In contrast, cannabinoids protect normal glial cells of astroglial and oligodendroglial lineages from apoptosis mediated by the CB1 receptor (Figure 8.4).

Immunohistochemical and functional analyses in mouse models of gliomas, skin carcinomas, and other tumors have demonstrated that cannabinoid administration alters the vascular hyperplasia characteristic of actively growing tumors into a pattern characterized by small, differentiated, impermeable capillaries, thus thwarting angiogenesis. This is accompanied by a reduced expression of vascular endothelial growth factor (VEGF) and other pro-angiogenic cytokines, as well as of VEGF receptors. Activation of cannabinoid receptors in vascular endothelial cells inhibits cell migration and survival, also contributing to impaired tumor vascularization. Cannabinoid administration to tumor-bearing mice decreases the activity and expression of matrix metalloproteinase 2, a proteolyic enzyme that allows tissue breakdown and remodeling during angiogenesis and metastasis. This supports the inhibitory effect of cannabinoids in inhibiting tumor invasion in animal models (Figure 8.5).

Further support comes from studies in human non-small cell lung cancer cell lines that overexpress

epidermal growth factor receptor, in which THC inhibits epidermal growth factor-induced growth, chemotaxis, and chemoinvasion (Preet, Ganju, & Groopman, 2007). In an *in vivo* model using severe combined immunodeficient mice, subcutaneous tumors were generated by inoculating the animals with the same cell lines. Tumor growth in THC-treated animals was inhibited by 60% compared with vehicle-treated controls. The inhibition was significant both regarding the subcutaneous xenograft as well as the number and weight of lung metastases. Tumor specimens revealed antiproliferative and antiangiogenic effects of THC.

FIGURE 8.3. Mechanism of cannabinoid-induced cancer cell death.

Cannabinoid agonists bind to CB_1 and/or CB_2 receptors to stimulate de novo synthesis of ceramide via induction of the enzyme serine palmitoyltransferase (SPT). This triggers the induction of an eIF2 α -mediated endoplasmic reticulum (ER) stress response that promotes the up-regulation of the transcription factor p8 and several of its downstream targets, including the transcription factors ATF-4 and CHOP and the pseudokinase TRB3. This favors the interaction of TRB3 with the prosurvival protein AKT, thus leading to the inhibition of the AKT–mTORC1 axis and the subsequent induction of autophagy. Autophagy is upstream of intrinsic mitochondrial apoptosis in the process of cannabinoid-induced cell death.

Another potential anticancer and particularly antimetastasis mechanism for cannabinoids has been identified. Id helix-loop-helix proteins control processes related to tumor progression (McAllister, Christian, Horowitz, Garcia, & Desprez, 2007). Reducing Id-1 using antisense technology led to significant reductions in breast cancer cell proliferation and invasiveness in *in vitro* models and metastases in mice. Reducing Id-1 expression with antisense technology is not a possible intervention in humans with breast cancer at this time, however. CBD has been demonstrated to down-regulate Id-1 expression in aggressive human breast cancer cells (McAllister, 2011). The investigators,

therefore, suggest that CBD represents the first nontoxic exogenous agent that can significantly decrease Id-1 expression in metastatic breast cancer cells leading to the down-regulation of tumor aggressiveness *in vitro*.

FIGURE 8.4. Delta-9-THC kills brain tumor cells at a concentration that is nontoxic to normal brain cells. Images obtained through a time-lapse microscope illustrate the selective induction of cell death in cultures of human glioblastoma multiforme (GBM) cells (A) compared to normal human glial cells (B). After 20 hours of treatment, death of nearly all of the GBM cells is evidenced by cells shrinking to inanimate white spheres. The normal cells exposed to the same concentration of delta-9-THC continue to migrate and divide. (Photo courtesy of McAllister and Yount).

Two additional potential mechanisms of anticancer activity warrant brief mention. Cannabinoids, both plant-derived and endogenous, are believed to have anti-inflammatory effects. Inflammation is being increasingly linked to the development of various malignancies. Perhaps one of the most obvious associations is the development of colorectal carcinoma in patients with inflammatory bowel disease. A mouse study has demonstrated that signaling of the endogenous cannabinoid system is likely to provide intrinsic protection against colonic inflammation (Massa et al., 2004). This has led to the development of colorectal cancer (Patsos, Hicks, Greenhough, Williams, & Paraskeva, 2005). The addition of CBD to colorectal cancer cell lines led to reduced proliferation (Aviello et al., 2012). In mice, azoxymethane treatment leads to aberrant crypt foci, polyps, and, ultimately, tumor formation. Treatment with CBD 1 mg/kg decreased these azoxymethane effects.

FIGURE 8.5. Other antitumor effects of cannabinoids.

Besides inducing apoptosis of tumor cells, cannabinoid administration can decrease the growth of gliomas by other mechanisms, including at least: (i) reduction of tumor angiogenesis, by inhibition of the vascular endothelial growth factor (VEGF) pathway; (ii) inhibition of tumor cell invasion, by down-regulation of matrix metalloproteinase-2 (MMP-2) expression; (iii) induction of tumor cell differentiation, by down-regulation of epidermal growth factor (EGF) receptor expression; and perhaps (iv) arrest of the cell cycle, by down-regulation of cyclin-dependent kinase-1 (CDK1) expression. The relative contribution of these processes to the inhibition of tumor growth depends on various factors such as the type of tumor under study, the experimental model used and the intensity of cannabinoid signaling.

Kaposi's sarcoma-associated herpesvirus/Human herpesvirus-8 (KSHV/HHV-8) and Epstein-Barr virus (EBV) are related and implicated in the cause of a number of malignant diseases including Kaposi's sarcoma and primary effusion lymphoma (KSHV) and Burkitt's lymphoma, primary central nervous system lymphoma, Hodgkin's disease, and nasopharyngeal carcinoma (EBV). A group of investigators has demonstrated that THC is a potent and selective antiviral agent against KSHV (Medveczky, Sherwood, Klein, Friedman, & Medveczky, 2004). It is felt that THC may inhibit KSHV replication through the activation of cannabinoid receptors. The authors conclude that further studies on cannabinoids and herpesviruses are important as they may lead to development of drugs that inhibit reactivation of these oncogenic viruses. Counter to these findings, however, is the suggestion that delta-9-THC may actually enhance KSHV infection and replication and foster KSHV-mediated endothelial transformation (Zhang, Wang, Kunos, & Groopman, 2007). These investigators caution that use of cannabinoids may thus place individuals at greater risk for the development and progression of Kaposi's sarcoma, although epidemiologic data have not supported these *in vitro* findings (Chao et al., 2009).

So with the body of evidence increasing, where are the clinical trials in humans with malignant disease. True, cannabinoids have psychoactive side effects, but these could be considered to be

within the boundaries of tolerance for the toxicity profiles of cytotoxic chemotherapeutic and targeted small molecule therapies widely used in oncology. Ten years ago, the Spanish Ministry of Health approved a pilot clinical trial carried out in collaboration between the Tenerife University Hospital and the Guzman laboratory in Madrid to investigate the effect of local administration of THC intracranially through an infusion catheter on the growth of recurrent glioblastoma multiforme (Guzman et al., 2006). In this ground-breaking pilot study, THC administration was shown to be safe and associated with decreased tumor cell progression –as assessed by magnetic resonance imaging and biomarker expression criteria- in at least two of nine patients studied.

Cannabinoid-Based Combination Anticancer Therapies

The use of combination anticancer therapies has a number of theoretical advantages over single agentbased strategies as they allow the simultaneous targeting of tumor growth, progression, and/or spreading at different levels. In line with this idea, recent observations suggest that the combined administration of cannabinoids with other anticancer drugs acts synergistically to reduce tumor growth in mice. For example, the administration of THC and temozolomide (the benchmark agent for the management of glioblastoma) exerts a strong antitumor action in glioma xenografts, an effect that is also evident in temozolomide-resistant tumors (Torres et al., 2011). Of interest, no toxicity was observed in mice treated with combinations of THC and temozolomide. As most patients with glioblastoma receive temozolomide treatment, these findings indicate that the combined administration of temozolomide and cannabinoids could be therapeutically exploited in the management of glioblastoma.

Likewise, another study has recently shown that the combined administration of gemcitabine and different cannabinoid agonists synergistically reduces the viability of pancreatic cancer cells (Donadelli et al., 2011). Other reports indicate that anandamide and HU-210 may also enhance the anticancer activity of paclitaxel (Miyato et al., 2009) and 5-fluorouracil (Gustafsson, Lindgren, Jonsson, & Jacobsson, 2009).

An additional approach has been to combine THC with CBD, a cannabinoid that reduces the growth of several types of tumor xenografts in mice through a still poorly defined mechanism. Combined administration of THC and CBD enhances the anticancer activity of THC and reduces the doses of THC needed to induce its tumor growth-inhibiting activity (Marcu et al., 2010; Torres et al., 2011). Moreover, the combination of THC and CBD together with temozolomide produces a striking reduction in the growth of glioma xenografts even when low doses of THC are used (Torres et al., 2011). As mentioned, CBD has also been shown to alleviate some of the undesired effects of THC administration, such as seizures, incoordination, and psychotic events, and, therefore, improves the tolerability of cannabis-based medicines (Pertwee, 2009). As *Cannabis sativa* contains an estimated 100 different cannabinoids, some of the other cannabinoids present in addition to CBD might also attenuate the psychoactive side-effects of THC or even produce other therapeutic benefits. Thus, we believe that clinical studies aimed at analyzing the efficacy of cannabinoids as antitumor agents should be based not only on the use both of pure substances, such as THC and CBD, but also of cannabis products containing controlled amounts of THC, CBD, and other cannabinoids.

Despite these impressive *in vitro* and animal-model findings regarding the potential antitumor effects of cannabinoids, there is still no solid basis for ongoing claims by proponents of highly concentrated cannabis extracts or oils that these preparations can "cure cancer." Increasing numbers of patients in North America are seeking oils high in THC and/or CBD due to testimonials that

patients have used these preparations either topically to eradicate skin cancers or systemically to eliminate nonskin cancers. This has led to a number of patients seeking to forego or postpone potentially curative conventional cancer therapies in favor of self-medicating with high-potency cannabis oils. Many patients claiming to be cured of their cancers have used the products in addition to conventional cancer therapies obfuscating the issue further. Although the *in vitro* and animal evidence is intriguing, there have not yet been any robust human studies investigating cannabis as an anticancer agent that would warrant advising patients to forego conventional therapy in favor of using a high-potency cannabis extract. Patients who chose to delay conventional therapies in hopes of benefitting from a trial of cannabis oil against their cancer risk the possibility of having a potentially treatable cancer become incurable. As the preclinical evidence suggests that cannabinoids might enhance the antitumor activity of conventional chemotherapeutic agents as well as ameliorate associated side effects, the addition of cannabinoid-based preparations to standard cancer therapy should not be discouraged by the treating oncologist.

Alternative Delivery Systems

What if clinical trials were to demonstrate that inhaled cannabis may be of benefit to patients with a condition like, for example, recurrent glioblastoma multiforme? It is not likely that even a metaanalysis of a number of similar studies in any condition would convince the necessary regulatory bodies that cannabis should be re-instated to the U.S. Pharmacoepia and made widely available to patients who may benefit from its use. The Institute of Medicine Report in 1999 clearly stated that the accumulated data indicate a potential therapeutic value for cannabinoid drugs particularly in the areas of pain relief, control of nausea and vomiting and appetite stimulation. They went on to suggest that the "goal of clinical trials of smoked marijuana would not be to develop it as a licensed drug, but as a first step towards the development of non-smoked, rapid-onset cannabinoid delivery systems" (Joy et al., 1999).

To this end, we conducted a trial in healthy marijuana smoker volunteers comparing the blood levels of cannabinoids achieved upon inhaling marijuana that has been vaporized in a device that heated the plant product to below the temperature of combustion and collected the volatilized gases with those obtained upon smoking a comparable dosed cigarette (Abrams et al., 2007). Eighteen healthy subjects were evaluated. One dose (1.7, 3.4 or 6.8% tetrahydrocannabinol) and delivery system (smoked cannabis cigarette or vaporization system) was randomly assigned for each of the six inpatient study days. The peak plasma concentrations and six-hour area under the plasma concentration-time curve of THC after inhalation of vaporized cannabis were similar to those of smoked cannabis.

Carbon monoxide levels were substantially reduced with vaporization suggesting less exposure to noxious substances. Neuropsychologic effects were equivalent and participants expressed a clear preference for vaporization as a delivery method. No adverse events were observed. Vaporization of cannabis is a safe and effective mode of delivery of THC. Numerous vaporization devices are now available to patients accessing medicinal cannabis.

Another nonsynthetic alternative to smoked or inhaled cannabis is the oromucosal preparation of whole-plant extract (Rog et al., 2005; Russo et al., 2007; Wright, 2007). Nabiximols was first approved as a prescription medication in Canada in 2005 for symptomatic relief of neuropathic pain in multiple sclerosis and subsequently as adjunctive therapy for patients with cancer pain on other analgesic medications. The cannabis-based medication is now available in Canada, the United

Kingdom, Spain, and other European countries, and being evaluated in large-scale Phase III clinical trials in patients with cancer-related pain in the United States.

Guidelines for Providers

The Institute of Medicine is aware that the development and acceptance of smokeless marijuana delivery systems "may take years; in the meantime there are patients with debilitating symptoms for whom smoked marijuana may provide relief." So what is a provider to do? Patients with cancer have a number of symptoms that may be responsive to cannabinoid therapies. As enumerated, these include nausea, vomiting, anorexia, pain, insomnia, anxiety and depression. Many providers would frown upon the use of a relatively benign inhaled psychotropic agent while freely writing prescriptions for pharmaceutical agents with significantly greater cost, potential for addiction or abuse, and more negative societal impact overall.

A Medical Board of California Action Report from 2004 provides a model for how states with medical marijuana legislation should advise physicians (Medical Board of California, 2004) "The intent of the board at this time is to reassure physicians that if they use the same proper care in recommending medical marijuana to their patients as they would any other medication or treatment, their activity will be viewed by the Medical Board just as any other appropriate medical intervention.... If physicians use the same care in recommending medical marijuana to patients as they would recommending or approving any other medication or prescription drug treatment, they have nothing to fear from the Medical Board."

The Board recommends following the accepted standards that would be used in recommending any medication. A history and physical examination should be documented. The provider should ascertain that medical marijuana use is not masking an acute or treatable progressive condition. A treatment plan should be formulated. A patient need not have failed all standard interventions before marijuana can be recommended. The physician may have little guidelines in actually recommending a concrete dose for the patient to use (Carter, Weydt, Kyashna-Tocha, & Abrams, 2004). Because there are so many variables associated with effect, the physician and patient should develop an individual self-titration dosing paradigm that allows the patient to achieve the maximum benefit with tolerable side effects. Discussion of potential side effects and obtaining verbal informed consent are desirable. Periodic review of the treatment efficacy should be documented. Consultation should be obtained when necessary. Proper record keeping that supports the decision to recommend the use of medical marijuana is advised. Despite all these guidelines, the California Medical Board still reminds physicians that making a written recommendation "could trigger a federal action."

On a more positive note, in a unanimous vote, the Assembly of the American Psychiatric Association approved a strongly worded statement supporting legal protection for patients using medical marijuana with their doctor's recommendation (http://bbsnews.net/article.php/20071108030026607). The APA action paper reiterates that "the threat of arrest by federal agents, however, still exists. Seriously ill patients living in these states with medical marijuana recommendations from their doctors should not be subjected to the threat of punitive federal prosecution for merely attempting to alleviate the chronic pain, side effects, or symptoms associated with their conditions or resulting from their overall treatment regimens....[We] support protection for patients and physicians participating in state approved medical marijuana programs."

It behooves the integrative oncologist to follow closely future studies of cannabinoids and cancer.

It is likely that these agents will not only prove to be useful in symptom management and palliative care, but as anti-tumor agents as well.

REFERENCES

Abel, E. L. (1980). Marijuana: The first twelve thousand years. New York: Plenum Press.

- Abrams, D. I. (2000). Potential interventions for HIV/AIDS wasting: An overview. JAIDS, 25, S74-S80.
- Abrams, D. I., Child, C. C., & Mitchell, T. (1995). Marijuana, the AIDS wasting syndrome and the US government. *New England Journal of Medicine*, 333, 670–671.
- Abrams, D. I., Couey, P., Shade, S. B., Kelly, M. E., & Benowitz, N. L. (2011). Cannabinoid: Opioid interaction in chronic pain. *Clinical Pharmacology and Therapeutics* 90, 844–851.
- Abrams, D. I., Jay, C., Shade, S., Vizoso, H., Reda, H., Press, S., ... Petersen K. (2007). Cannabis in painful HIV-associated sensory neuropathy: A randomized, placebo-controlled trial. *Neurology* 68, 515–521.
- Abrams, D. I., Vizoso, H. P., Shade, S. B., Jay, C., Kelly, M. E., Benowitz, N. (2007). Vaporization as a smokeless cannabis delivery system: A pilot study. *Clinical Therapeutics and Pharmacology* 82, 572–578.
- Adams, I. B., & Martin, B. R. (1996). Cannabis: Pharmacology and toxicology in animals and humans. Addiction, 91, 1585-1614.
- Adler, J. N., & Colbert, J. A. (2013). Medicinal use of marijuana-polling results. New England Journal of Medicine, 369, e30.
- Agurell, S., Halldin, M., Lindgren, J., Ohlsson, A., Widman, M., Gillespie, H., & Hollister, L. (1986). Pharmacokinetics and metabolism of delta1- tetrahydrocannabinol and other cannabinoids with emphasis on man. *Pharmacology Review*, 38(1), 21–43.
- Aviello, G., Romano, B., Borrelli, F., Capasso, R., Gallo, L., Piscitelli, F, ... Izzo, A. A. (2012). Chemopreventive effect of the nonpsychotropic phytocannabinoid cannabidiol on experimental colon cancer. *Journal of Molecular Medicine*, 90, 925–934.
- Bar-Sela, G., Vorobeichik, M., Drawsheh, S., Omer, A., Goldberg, V., & Muller, E. (2013). The medical necessity for medicinal cannabis: Prospective, observational study evaluating treatment in cancer patients on supportive or palliative care. *Evidence-Based Complementary and Alternative Medicine*, 510392. doi: 10.1155/2013/510392
- Beal, J. E., Olson, R., Laubenstein, L., Morales, J. O., Bellman, P., Yangco, B., ... Shepard, K. V. (1995). Dronabinol as a treatment for anorexia associated with weight loss in patients with AIDS. *Journal of Pain and Symptom Management*, 10, 89–97.
- Ben Amar, M. (2006). Cannabinoids in medicine: a review of their therapeutic potential. Journal of Ethnopharmacology, 105, 1–25.
- Bifulco, M., & DiMarzo, V. (2002). Targeting the endocannabinoid system in cancer therapy: A call for further research. *Nature Medicine*, 8, 547–550.
- Bifulco, M., Laezza, C., Pisanti, S., & Gazzerro, P. (2006). Cannabinoids and cancer: Pros and cons of an antitumour strategy. *British Journal of Pharmacology*, 148, 123–135.
- Blazquez, C., Gonzalez-Feria, L., Alvarez, L., Haro, A., Llanos Casanova, M., & Guzman, M. (2004). Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. *Cancer Research*, 64, 5617–5623.
- Blazquez, C., Casanova, M. L., Planas, A., Gomez del Pulgar, T., Villanueva, C., Fernandez-Acenero, M. J., ... Guzman, M. (2003). Inhibition of tumor angiogenesis by cannabinoids. *FASEB Journal*, 17, 529–531.
- Booth, M. (2003). Cannabis: A history. New York: St. Martin's.
- Borgelt, L. M., Franson, K. L., Nussbaum, A. M., & Wang, G. S. (2013). The pharmacologoic and clinical effects of medical cannabis. *Pharamcotherapy*, 3(2),195–209.
- Bostwick, J. M., Reisfield, G. M., & DuPont, R. L. (2013). Medicinal use of marijuana. *New England Journal of Medicine*, 368, 866–868.
- Bowles, D. W., O'Bryant, C. L., Camidge, R., & Jimeno, A. (2012). The intersection between cannabis and cancer in the United States. *Critical Reviews in Oncology/Hematology*, 83, 1–10.
- Brisbois, T. D., de Kock, I. H., Watanabe, S. M., Mirhosseini. M., Lamoureux, D. C., Chasen, M., ... Wismer, W. V. (2011). Delta-9tetrahydrocannabinol may palliate altered chemosensory perception in cancer patients: results of a randomized, double-blind, placebocontrolled pilot trial. *Annals of Oncology*, 22(9), 2086–2093.
- Caffarel, M. M., Andradas, C., Pérez-Gómez, E., Guzmán, M., & Sánchez, C. (2012). Cannabinoids: A new hope for breast cancer therapy? Cancer Treatment Review, 38, 911–918.
- California Physicians and Medical Marijuana. Action Report. Medical Board of California 2004; 90:1-4 available at http://www.caldocinfo.ca.gov
- Calignano, A., LaRana, G., Giuffrida, A., & Piomelli, D. (1998). Control of pain initiation by endogenous cannabinoids. *Nature*, 394, 277–281.
- Carter, G. T., Weydt, P., Kyashna-Tocha, M., & Abrams, D. I. (2004). Medicinal cannabis: rational guidelines for dosing. *IDrugs*, 7, 464-470
- Chan, I. S. F., Naton, J. D., Saravolatz, L. D., Crane, L. R., & Osterberger, J. (1995). Frequencies of opportunistic diseases prior to death among HIV-infected persons. *AIDS*, 9, 1145–1151.
- Chao, C., Jacobson, L. P., Jenkins, F. J., Tashkin, D., Martinez-Maza, O., Roth, M. D., ... Detels, R. (2009). Recreational drug use and

risk of Kaposi's sarcoma in HIV- and HHV-8-coinfected homosexual men. *AIDS Research and Human Retroviruses* 25(2), 149–156.

Christensen, R., Kristensen, P. K., Bartals, E. M., Bliddal, H., & Astrup, A. (2007). Efficacy and safety of the weight-loss drug rimonabant: A meta-analysis of randomised trials. *Lancet*, 370, 1706–1713.

Cichewicz, D. L. (2004). Synergistic interactions between cannabinoid and opioid analgesics. *Life Science*, 74(11), 1317–1324.

Cichewicz, D. L., & McCarthy, E. A. (2003). Antinociceptive synergy between delta(9)-tetrahydrocannabinol and opioids after oral administration. *Journal of Pharmacology and Experimental Therapy*, 304(3), 1010–1015.

- Cichewicz, D. L., Martin, Z. L., Smith, F. L., & Welch, S. P. (1999). Enhancement mu opioid antinociception by oral delta9tetrahydrocannabinol: Dose-response analysis and receptor identification. *Journal of Pharmacology and Experimental Therapy*, 289(2), 859–867.
- Daling, J. R., Doody, D. R., Sun, X., Trabert, B. L., Weiss, N. S., Chen, C., ... Schwartz, S. M. (2009). Association of marijuana use and the incidence of testicular germ cell tumors. *Cancer*, 115(6), 1215–1223.
- De Petrocellis, L., Melck, D., Palmisano, A., Bisogno, T., Laezza, C., Bifulco, M., & Di Marzo, V. (1998). The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. *Proceedings of the National Academy of Science*, 95, 8375–8380.
- Devane, W. A., Dysarc, F. A., Johnson, M. R., Melvin, L. S., & Howlett, A. C. (1988). Determination and characterization of a cannabinoid receptor in rat brain. *Molecular Pharmacology*, 34, 605–613.
- Devane, W. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., ... Mechoulam, R. (2002). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. *Science*, 258, 1946–1949.
- Donadelli, M., Dando, I., Zaniboni, T., Costanzo, C., Dalla Pozza, E., Scupoli, M. T., ... Palmiera, M. (2011). Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. *Cell Death Diseases*, 2, e152.
- Duran, M., Perez, E., Abanades, S., Vidal, X., Saura, C., Majem, M., ... Capella, D. (2010). Preliminary efficacy and safety of an oromucosal standardized cannabis extract in chemotherapy-induced nausea and vomiting. *British Journal of Clinical Pharmacology*, 70(5), 656–663.
- Ellis, R. J., Toperoff, W., Vaida, F., van den Brande, G. Gonzales, J., Gouaux, B., ... Atkinson, J. H. (2009). Smoked medicinal cannabis for neuropathic pain in HIV: a randomized, crossover clinical trial. *Neuropsychoparmacology*, 34(3), 672–680.
- Elikottil, J., Gupta, P., & Gupta, K. (2009). The analgesic potential of cannabinoids. Journal of Opioid Management, 5(6):341-357.
- Engels, F. K., de Jong, F. A., Sparreboom, A., Mathot, R. A., Loos, W. J., Kitzen, J. J., ... Mathijssen, R. H. (2007). Medicinal cannabis does not influence the clinical pharmacokinetics of irinotecan and docetaxel. *Oncologist*, 12(3), 291–300.
- Facci, L., Dal Toso, R., Romanello, S., Buriani, A., Skaper, S. D., & Leon, A. (1995). Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. *Proceedings of the National Academy of Science USA*, 92, 3376–3380.
- Felder, C. C., & Glass, M. (1998). Cannabinoid receptors and their endogenous agonists. Annual Review of Pharmacology and Toxicology, 38, 179–200.
- Fields, H. L., & Meng, I. D. (1998). Watching the pot boil. Nature Medicine, 4, 1008–1009.
- Fine, P. G., & Rosenfeld, M. J. (2013). The endocannabinoid system, cannabinoids, and pain. *Rambam Maimonides Medical Journal*, 4(4), eooXX. doi:10.5041/RMMJ.100XX
- Gorter, R., Seefried, M., & Volberding P. (1992). Dronabinol effects on weight in patients with HIV infection. AIDS, 6, 127.
- Grothenhermen, F., & Russo, E. (Eds.). (2002). *Cannabis and cannabinoids: Pharmacology, toxicology, and therapeutic potential*. Binghamton, NY: Haworth Press.
- Guindon, J., & Hohmann, A. G. (2011). The endocannabinoid system and cancer: Therapeutic implication. *British Journal of Pharmacology*, 163, 1447–1463.
- Gustafsson, S. B., Lindgren, T., Jonsson, M., & Jacobsson, S. (2009). Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil. *Cancer Chemotherapy and Pharmacology*, 63, 691–701.
- Guzman, M. (2003). Cannabinoids: Potential anticancer agents. Nature Reviews/Cancer, 3, 745-755.
- Guzman, M., Duarte, M. J., Blazquez, C., Ravina, J., Rosa, M. C., Galve-Roperh, I., ... Gonzalez-Feria, L. (2006). A pilot study of delta-9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. *British Journal of Cancer*, 95, 1–7.
- Hashibe, M., Morgenstern, H., Cui, Y., Tashkin, D. P., Zhang, Z-F., Cozen, W., ... Greeland, S. (2006). Marijuana use and the risk of lung and upper aerodigestive tract cancers: Results of a population-based case-control study. *Epidemiol Biomarkers and Prevention*, 15, 1829–1834.
- Health Canada. (2010). Marihuana (Marijuana, Cannabis): Dried plant for administration by ingestion or other means. Ottawa, Canada: Author. http://www.hc-sc.gc.ca/dhp-mps/marihuana/med/infoprof-eng.php
- Herzberg, U., Eliav, E., Bennett, G. J., & Kopin, I. J. (1997). The analgesic effect of R(+)-WIN 55,212-2 mesylate, a high affinity cannabinoid agonist, in a rat model of neuropathic pain. *Neuroscience Letters*, 221, 157-160.
- Ibrahim, M. M., Porreca, F., Lai, J., Albrecht, P. J., Rice, F. L., Khodorova, A., ... Malan, T. P. Jr. (2005). CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. *Proceedings of the National Academy of Science*, 102, 3093–3098.
- Johnson, J. R., Burnell-Nugent, M., Lossignol, D., Ganae-Motan, E. D., Potts, R., & Fallon, M. T. (2010). Multicenter, double-blind,

randomized, placebo-controlled, parallel-group study of the efficacy, safety and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. *Journal of Pain and Symptom Management* 39(2), 167–178.

- Joy, J. E., Watson, S. J., & Benson, J. A. (Eds.). (1999). *Marijuana and medicine: Assessing the science base*. Washington, DC: National Academy Press.
- Karschner, E. L., Darwin, W. D., Goodwin, R. S., Wright, S., & Huestis, M. A. (2011). Plasma cannabinoid pharmacokinetics following controlled oral Δ-9tetrahydrocannabinol and oromucosal cannabis extract administration. *Clinical Chemistry*, 57, 66–75.
- Katona, I., & Freund, T. F. (2012). Multiple functions of endocannabinoid signaling in the brain. *Annu Review of Neurosciene*, 35, 529–558.
- Lacson, J. C., Carroll, J. D., Tuazon, E., Castelao, E. J., Bernstein, L., & Cortessis, V. K.,...(2012). Population-based case-control study of recreational drug use and testis cancer risk confirms an association between marijuana use and nonseminoma risk. *Cancer*, 118(21), 5374–5383.
- Ligresti, A., Moriello, A. S., Starowicz, K., Matias, I., Pisanti, S., De Petrocellis, L., ... Di Marzo, V. (2006). Anti-tumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. *Journal of Pharmacology and Experimental Therapy*, 318, 1375–1387.
- Llanos Casanova, M., Blazquez, C., Martinez-Palacio, J., Villanueva, C., Fernandez-Acenero, M. J., ... Guzman, M. (2003). Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid recptors. *Journal of Clinical Investigation*, 111, 43–50.
- Lynch, M. E., Cesar-Rittenberg, P., & Hohmann, A. G. (2014). A double-blind, pacebo-controlled, cross-over pilot with extension using an oral mucosal cannabinoid-extract for treatment of chemotherapy-induced neuropathic pain. *Journal of Pain Symptom Management*, 47, 166–173.
- Mack, A., & Joy, J. E. (2001). *Marijuana as medicine?—The science beyond the controversy*. Washington, DC: National Academy Press.
- Manzanares, J., Corchero, J., Romero, J., Fernandez-Ruiz, J. J., Ramos, J. A., & Fuentes, J. A. (1999). Pharmacological and biochemical interactions between opioids and cannabinoids. *Trends in Pharmacology Science*, 20(7), 287–294.
- Marcu, J. P., Christian, R. T., Lau, D., Zielinski, A. T., Horowitz, M. P., Lee J., ... McAllister, S. D. (2010). Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. *Molecular Cancer Therapy*, 9, 180–189.
- Massa, F., Marsicano, G., Hermann, H., Cannich, A., Monory, K., Cravatt, B. F., ... Lutz, B. (2004). The endogenous cannabinoid system protects against colonic inflammation. *Journal of Clinical Investigation*, 113, 1202–1209.
- Massi, P., Solinas, M., Cinquina, V., & Parolaro, D. (2012). Cannabidiol as potential anticancer drug. *British Journal Clinical Pharmacology*, 75(2), 303–312.
- McAllister, S. D., Chan, C., Taft, R. J., Luu, T., Abood, M. E., & Moore, D. (2005). Cannabinoids selectively inhibit proliferation and induce death of cultured glioblastoma multiforme cells. *Journal of Neuro-Oncology*, 74, 31–40.
- McAllister, S. D., Christian, R. T., Horowitz, M. P., Garcia, A., & Desprez, P-Y. (2007). Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. *Molecular Cancer Therapy*, 6, 2921–2927.
- McAllister, S. D., Murase, R., Christian, R. T., Lau, D., Zielinski, A. J., Allison, J., ... Desprez, P. Y. (2011). Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion and metastasis. *Breast Cancer Research & Treatment*, 129(1), 37–47.
- McKallip, R. J., Lombard, C., Fisher, M., Martin, B. R., Ryu, S., Grant, S., ... Nagarkatti, M. (2002). Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. *Blood*, 100, 627–634.
- Mechoulam, R., Berry, E. M., Avraham, Y., DiMarzo, V., & Fride, E. (2006). Endocannabinoids, feeding and suckling—from our perspective. *International Journal of Obesity (London)*, 30(Suppl 1), S24–S28.
- Medveczky, M. M., Sherwood, T. A., Klein, T. W., Friedman, H., & Medveczky, P. G. (2004). Delta-9-tetrahydrocannabinol (THC) inhibits lytic replication of gamma oncogenic herpesviruses in vitry. *BMC Medicine*, 2, 34.
- Mehra, R., Moore, B. A., Crothers, K., Tetrault, J., & Fiellin, D. A. (2006). The association between marijuana smoking and lung cancer: a systematic review. *Archives of Internal Medicine*, 166, 1359–1367.
- Meng, I. D., Manning, B. H., Martin, W. J., & Fields, H. J. (1998). An analgesic circuit activated by cannabinoids. *Nature*, 395, 381-383.
- Miller, L. K., & Devi, L. A. (2011). The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. *Pharmacology Review*, 63, 461–470.
- Miyato, H., Kitayama, J., Yamashita, H., Souma, D., Asakage, M., Yamada, J., & Nagawa, H. (2009). Pharmacological synergism between cannabinoids and paclitaxel in gastric cancer cell lines. *Journal of Surgical Research*, 155, 40–47.
- Noyes, R., & Baram. D. (1974). Cannabis analgesia. Comprehensive Psychiatry, 15, 531.
- Noyes, R., Brunk, S., Avery, D, & Canter, A. (1975). The analgesic properties of delta-9-tertrahydrocannabinol and codeine. *Clinical Pharmacology and Therapeutics*, 18, 84–89.
- Noyes, R., Brunk, S., Baram, D., & Canter, A. (1975). Analgesic effect of delta-9-tetrahydrocannabinol. *Journal of Clinical Pharmacology*, 15, 139–143.
- Patsos, H. A., Hicks, D. J., Greenhough, A., Williams, A. C., & Paraskeva, C. (2005). Cannabinoids and cancer: potential for colorectal cancer therapy. *Biochemical Society Transactions*, 33, 712–714.

Pertwee, R. G. (1997). Pharmacology of cannabinoid CB1 and CB2 receptors. *Pharmacology Therapy*, 74, 129–180.

- Pertwee, R. G. (2009). Emerging strategies for exploiting cannabinoid receptor agonists as medicines. *British Journal of Pharmacology*, 156, 397-411.
- Pertwee, R. G., Howlett, A. C., Abood, M. E., Alexander, S. P., Di Marzo, V., Elphick, M. R., ... Ross, R. A. (2010). Cannabinoid receptors and their ligands: beyond CB1 and CB2. *Pharmacology Review*, 62, 588–631.
- Pisanti, S., Picardi, P., D'Alessandro, A., Laezza, C., & Bifulco, M. (2013). The endocannabinoid signaling system in cancer. *Trends in Pharmacological Science*, 34, 273–282.
- Pollan, M. (2001). The Botany of desire: A plant's eye view of the world. New York: Random House.
- Preet, A., Ganju, R. K., & Groopman, J. E. (2007). Delta-9-tetrahydrocannabinol inhibits epithelial growth-factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo. Oncogene, 2007, 1–8.
- Pugh, G., Welch, S. P., & Bass, P. P. (1994). Modulation of free intracellular calcium and cAMP by morphine and cannabinoids, alone and in combination in mouse brain and spinal cord synaptpsomes. *Pharmacology Biochemical Behavior*. 49, 1093–1100.
- Pugh, G., Jr., Smith, P. B., Dombrowski, D. S., & Welch, S. P. (1996). The role of endogenous opioids in enhancing the antinociception produced by the combination of delta 9-tetrahydrocannabinol and morphine in the spinal cord. *Journal of Pharmacology and Experimental Therapy*, 279(2), 608–616.
- Richardson, J., Kilo, S., & Hargreaves, K. (1998). Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. *Pain*, 75, 111–119.
- Robson, P. (2001). Therapeutic effects of cannabis and cannabinoids. British Journal of Psychiatry, 178, 107–115.
- Rog, D. J., Nurmikko, T. J., Fride, T., & Young, C. A. (2005). Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. *Neurology*, 65, 812–819.
- Russo, E. B. (2011). Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. *British Journal of Pharmacology*, 163(7), 1344–1364.
- Russo, E. B., Guy, G. W., & Robson, P. J. (2007). Cannabis, pain, and sleep: Lessons from therapeutic clinical trials of Sativex®, a cannabis-based medicine. *Chemistry & Biodiversity*, 4, 1729–1743.
- Sallen, S. E., Zinberg, N. E., & Frei, E. (1975). Antiemetic effect of delta-9-THC in patients receiving cancer chemotherapy. *New England Journal of Medicine*, 293, 795–797.
- Sanchez, C., de Ceballos, M. L., Gomez del Pulgar, T., Rueda, D., Corbacho, C., Velasco, G....(2001). Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor. *Cancer Research*, 61, 5784–5789.
- Sarfaraz, S., Afaq, F., Adhami, V. M., & Mukhtar, H. (2005). Cannabinoid receptor as a novel target for the treatment of prostate cancer. *Cancer Research*, 65, 1635–1641.
- Sidney, S., Quesenberry, C. P., Friedman, G. D., & Tekewa, I. S. (1997). Marijuana use and cancer incidence (California, USA). *Cancer Causes and Control*, 8, 722–728.
- Smith, F. L., Cichewicz, D., Martin, Z. L., & Welch, S. P. (1998). The enhancement of morphine antinociception in mice by delta9tetrahydrocannabinol. *Pharmacology Biochemistry and Behavior*, 60(2), 559–566.
- Staquet, M., Gantt, C., & Machin, D. (1978). Effect of a nitrogen analog of tetrahydrocannabinol on cancer pain. *Clinical Pharmacology and Therapeutics*, 23, 397–401.
- Sutton, I. R., & Daeninck, P. (2006). Cannabinoids in the management of intractable chemotherapy-induced nausea and vomiting and cancer-related pain. *Journal of Supportive Oncology*, 4, 531–535.
- Svendsen, K. B., Jensen, T. S., & Back, F. W. (2004). Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. *British Medical Journal*, 329, 253–260.
- Timpone, J. G., Wright, D. J., Li, N., Egorin, M. J., Enama, M. E., Mayers, J., & Galleto, G. (1997). The safety and pharmacokinetics of single-agent and combination therapy with megestrol acetate and dronabinol for the treatment of the HIV wasting syndrome. *AIDS Research in Human Retroviruses*, 13, 305–315.
- Torres, S., Lorente, M., Rodriguez-Fornes, F., Hernandez-Tiedra, S., Salazar, M., Garcia-Toboada, C., ... Velasco, G. (2011). A combined preclinical therapy of cannabinoids and temozolomide against glioma. *Molecular Cancer Therapy*, 10, 90–103.
- Trabert, B., Sigurdson, A. J., Sweeney, A. M., Strom, S. S., & McGlynn, K. A. (2011). Marijuana use and testicular germ cell tumors. *Cancer*, 117(4), 848–853.
- Tramer, M. R., Carroll, D., Campbell, F. A., Reynolds, D. J., Moore, R. A., & Mc Quay, H. J. (2001). Cannabinoids for control of chemotherapy-induced nausea and vomiting: quantitative systematic review. *British Medical Journal*, 323, 16–21.
- U.S. Department of Health and Human Services NTP Technical Report on the Toxicology and Carcinogenesis Studies of 1-Trans-Delta9-Tetrahydrocannabinol in F344/N Rats and B6C3F1 Mice (Gavage Studies). TR-446, November 1996. http://ntp.niehs.nih.gov/ntp/htdocs/LT_rpts/tr446.pdf
- Vaccani, A., Massi, P., Colombo, A., Rubino, T., & Parolaro, D. (2005). Cannabidiol inhibits human glioma cell migration through a cannabinoid receptor-independent mechanism. *British Journal of Pharmacology*, 144, 1032–1036.
- Velasco, G., Galve-Roperh, I., Sanchez, C., Blazquez, C., & Guzman, M. (2004). Hypothesis: Cannabinoid therapy for the treatment of gliomas? Neuropharmacology, 47, 315–323.
- Velasco, G., Sánchez, C., Guzmán, M. (2012). Towards the use of cannabinoids as antitumour agents. *National Review of Cancer*, 12, 436–444.

- Walker, J. M., Hohmann, A. G., Martin, W. J., Strangman, N. M., Huang, S. M., & Tsou, K. (1999). The neurobiology of cannabinoid analgesia. *Life Science*, 65, 665–673.
- Walker, J. M., Huang, S. M., Strangman, N. M., Tsou, K., & Sanudo-Pena, M. C. (1999). Pain modulation by release of the endogenous cannabinoid anandamide. *Proceedings of the National Academy of Science*, USA, 96, 12198–12203.
- Walsh, D., Nelson, K. A., & Mahmoud, F. A. (2003). Established and potential therapeutic applications of cannabinoids in oncology. Support Care Cancer, 11, 137–143.
- Ward, S. J., McAllister, S. D., Neelakantan, H., & Walker, E. A. (2014). Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT1A receptors without diminishing nervous system function or chemotherapy efficacy. *British Journal of Pharmacology*, 171(3), 636–645.
- Ware, M. A., Wang, T., Shapiro, S., Robonson, A., Ducruet, T., Huynh, T., ... Collet, J. P. (2010). Smoked cannabis for chronic neuropathic pain: A randomized controlled trial. *CMAJ*, 182(14), E694–701.
- Watanabe, K., Matsunaga, T., Yamamoto, I., Funae, Y., & Yoshimura, H. (1995). Involvement of CYP2C in the metabolism of cannabinoids by human hepatic microsomes from an old woman. *Biology of Pharmacology Bulletin*, 18, 1138–1141.
- Welch, S. P., & Eads, M. (1999). Synergistic interactions of endogenous opioids and cannabinoid systems. *Brain Research*, 848(1-2), 183-190.
- Welch, S. P., & Stevens, D. L. (1992). Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice. *Journal of Pharmacology and Experimental Therapy*, 262(1), 10–18.
- Welch, S. P., Thomas, C., & Patrick, G. S. (1995). Modulation of cannabinoid-induced antinociception after intracerebroventricular versus intrathecal administration to mice: possible mechanisms for interaction with morphine. *Journal of Pharmacology and Experimental Therapy*, 272, 310–321.
- Werner, C. (2011). Marijuana gateway to health: How cannabis protects us from cancer and Alzheimer's disease. San Francisco: Dachstar Press.
- Wilsey, B., Marcotte T., Deutsch, R., Gouaux, B., Sakai, S., & Donaghe, H. (2013). Low-dose vaporized cannabis significantly improves neuropathic pain. *Journal of Pain*, 14(2), 136–148.
- Wilsey, B., Marcotte, T., Tsodikov, A., Millman, J., Bewntley, H., Gouaux, B., & Fishman, S. (2008). A randomized, placebo-controlled crossover trial of cannabis cigarettes in neuropathic pain. *Journal of Pain*, 9(6), 506–521.
- Wright, S. (2007). Cannabinoid-based medicines for neurological disorders-clinical evidence. Molecular Neurobiology, 36, 129-136.
- Yamamoto, I., Watanabe, K., Narimatsu, S., & Yoshimura, H. (1995). Recent advances in the metabolism of cannabinoids. *International Journal of Biochemistry and Cell Biology*, 27, 741–746.
- Young, F. L. (1988). In the matter of marijuana medical rescheduling petition. Excerpt from US Federal Court Decision, http://www.fcda.org/pdf/young88.fcda.pdf
- Zhang, X., Wang, J. F., Kunos, G., & Groopman, J. (2007). Cannabinoid modulation of Kaposi's sarcoma-associated herpesvirus infection and transformation. *Cancer Research*, 67, 7230–7237.